

Classifier Combining

APR Course, Delft, The Netherlands Marco Loog

Multiple Multiples

- Multiple Classifiers
- Multiple Representations
- Multiple Sensor Sets

The Basic Questions

• How to reach a committee decision?

- How to design a combiner?
- How to constitute a committee?
- How to generate base classifiers?

TUDelft

Combining Architecture

TUDelft

The Combiner

Part I

Combiner Types

- Fixed rules based on crisp labels or confidences [estimated posterior probabilities]
- Special trained rules based on classifier confidences
- General trained rules interpreting base-classifier outputs as features

Fixed Combining Rules

- Object is assigned to class ω_i if combination of outcomes γ_{ij} for class ω_i over all classifications $\gamma_{ij} = S_j(x)$ is maximum
- Example combiners
 - Using labels : Voting, veto, majority
 - Using posteriors : Product, minimum, sum, mean, median, maximum, percentiles, etc.
- E.g. decision forests

• $P(f,\phi|\omega) = P(f|\omega)P(\phi|\omega)$

- Improvements by averaging out noise in experts
- What about sum rule?
- And majority voting?

TUDelft

fUDelft

[Further] Rules of Thumb

- Product, minimum
 - Independent feature spaces
 - Different expertise areas
 - Posteriors should be well estimated
- Sum, mean, median, majority
 - Equal posterior estimation in same feature space
 - Differently trained classifiers; based on same distribution
 - Bad behavior if some classifiers very good or very bad
- Maximum
 - Relies on most confident classifier ["shouts the loudest"]
 - Bad behavior if classifiers are [for instance] overtrained

TUDelft

• How to turn output of combiner into posteriors?

TUDelft

3

Decision Templates

- Decision templates are average outcomes of base classifiers per class training set
- Assign new objects to class of nearest decision template in base-classifier outcome space

Error Correcting Output Coding

- ECOC uses small set of binary classifiers for large set of c classes
- n classifiers can distinguish at most 2ⁿ classes
- If n > log₂(c) the system of classifiers is more robust
- ECOC studies mainly discuss coding scheme, not the way base classifiers are trained
- Combining is done by using crisp 0/1-labels

- A procedure to combine L classifiers
 - Do N-fold cross validation to estimate L posteriors [or labels]
 - This constitute training set for combiner
- C'est tout...

TUDelft

Multiple Use of Training Sets

- Can one reuse training sets both for training base classifiers and combiner?
 - Depends on undertraining, well trained, or overtrained base classifiers

tuDelft

Three Ways to Generate

- Random subspace approach
- Bagging
- Boosting

Random Subspace Approach

- Select dimensionality k' « k that fits well with training set size
- Select at random n subsets of k' features
- Train n classifiers
- Combine

Part II

Base Classifiers Construction

TUDelft

Bagging [Bootstrap Aggregating]

- Select a training set size m' < m
- Select at random n subsets of m' training objects [originally : bootstrap]
- Train a classifier [originally : decision tree]
- Combine [original: majority vote]
- Stabilize volatile classifiers

Boosting

- Initialize all objects with an equal weight
- Select a training set size m' < m according to the object weights
- Train a weak classifier
- Increase the weights of the erroneously classified objects
- Repeat as long as needed
- Combine
- Improve performance of weak classifiers

TUDelft

TUDelft

Adaboost Algorithm

1. Sample training set according to set of object weights [initially equal]

- 2. Use it for training simple [weak] classifier ω_{i}
- 3. Classify entire data set, using weights, to get error estimate $\boldsymbol{\epsilon}_i$
- 4. Store classifier weight $a_i = 0.5 \log((1-\epsilon_i)/\epsilon_i)$
- 5. Multiply weights of erroneously classified objects with $exp(\alpha_i)$ and correctly classified objects with $exp(-\alpha_i)$
- 6. Goto 1 as long as needed
- 7. Final classifier : weighted voting with weights a_i

TUDelft

Adaboost Example

Conclusions?

Boosting Observations

Resampling strategy

Boosting principle may work for more difficult data sets

Base classifiers

 Use of weak base classifiers may be improved by stronger classifiers

- Combiner
 - Weighted voting performs well
 - Still, trained Fisher combiner does better than weighted voting for small sets of base classifiers

TUDelft

